Enabling Near-Term Nationwide Implementation of Distance Based Road User Fees

Presentation: Max Donath
University of Minnesota

www.its.umn.edu

Presented at Symposium on Mileage-based User Fees
April 20-21, 2010
VMT Technology Requirements

• Must be nationally deployable
• Must be interoperable across all jurisdictions
• Must ensure privacy
• Must allow for the free flow of traffic; tolling gates or physical separators are unacceptable.
• Must identify mechanisms to ensure compliance and facilitate enforcement
• Must be auditable & transparent; maintain the trust of the public.
• Must be scalable, given the context - 250 million registered vehicles in the U.S. collectively traveled 3 trillion miles in 2006.
• Must minimize deployment of infrastructure & administrative overhead
Many approaches considered to date

- Weight/vehicle class
- Fuel consumption
- **Miles:** Just need odometer?
- **Time of day:** Time reference
- **In/out state:** Position + Map
- **Jurisdiction:** Position + Better Map
- **Variable charge rates:**
 Position + Better Map + Time + Charge schedule
- **Facility:** Accurate Position + Accurate Map
- **Parallel payment systems:** Fuel used vs VMT
 Provide credit for paid motor fuel use taxes (federal & state)
Previous study developed system requirements for GPS and digital maps for future in-vehicle road user charging system.

The focus was to evaluate BOTH in the most difficult of environments – where roads of different jurisdictions and different fee structures are located in close proximity to each other (e.g. a highway and a frontage road).

http://www.its.umn.edu/Publications/ResearchReports/reportdetail.html?id=687
GPS + Map: Privacy Considerations

• **GPS does NOT track!!**
• Confused by the media all the time
• GPS only provides the means with which a position can be computed.
• For others to “know” location, separate wireless communication device needed.
• Has important implications with respect to design of VMT system & data privacy.
Nevertheless, we have a problem

From Zits (May 15, 2006)
By Jerry Scott and Jim Borgman
Privacy vs. Security

- Privacy and security are not the same.
- What does the “customer” demand? What will the customer tolerate?
- Use of credit card can be secure, … but does not preserve privacy.
- Use of cell phone generally secure, … but does not preserve privacy.
- Privacy and Security dictate architecture for VMT technology.
Privacy Considerations

- Accountability
- Purpose is identified at time of collection
- Informed consent for collection
- Limited use and disclosure
- Limited retention of data
- Quality of data (accuracy, completeness, etc.)
- Security of data
- Openness about policies and practices
- Individual access to data and correction

Develop Privacy Standards

• Log and report only the “minimum” amount of data “necessary”
 – Do NOT record routes traveled
 – Log and report accumulated road user charges for each jurisdiction, facility, etc.
 – Remove unneeded data as soon as it is verified and uploaded to collection center
 – Erase data at collection center after suitable appeal period
 – Privacy architectures: The greater the privacy, the more difficult to audit and ensure compliance.

• Use encryption to ensure data security
GPS + Map: Architecture which preserves privacy

“Thick client” model
Limited Privacy Architecture

“Thin client” model

Vehicle

GPS Position, Time

On-board computer
Position, Time Memory
Communication Port

Travel History

BackOffice
Charge schedule
Digital Map
Road User Charge Algorithm
Billing Process
Privacy and Architecture

• If Privacy is to be fully maintained, ALL travel records and cost calculations should be performed on board the vehicle
 – Technical burden is on the vehicle
 – Increases the in-vehicle cost
 – Increases the complexity of the deployment
• Question: How does one get this technology into the present vehicle fleet?
The OBD-II Data Link Connector (DLC)

The OBD-II is available as a standard interface to the vehicle data bus on ALL passenger car models since 1996.
The OBD-II Data Link Connector (DLC)

- Power and ground are available on the DLC.
- The OBD-II connector pinout has Ground on #5 and Power on #16
- Vehicle data bus access turned on/off by ignition; power is always on (if battery connected & charged)
- Speed signal from vehicle bus can be read directly and numerically integrated to calculate distance traveled
Access by automotive service personnel still available

Communicate via encrypted Short Message Service (SMS)

Acquisition of actual time (time stamp), zone determination **and** communication enabled by same communication device
Paying the VMT Road User Fee

Communicate via Short Message Service (SMS)

- \#messages/transmission = 2 = Data + ACK return
- Cost based on \#messages (2-20 cents/week?)
- No new infrastructure needed
- Available wherever cellular is available (unlike other data protocols)
- Data held in buffer until cellular access is re-established
Signal Strength of a Single Tower

- Strength increases with proximity to tower
- Shows partial footprint of a single tower
VMT aggregated by zone using Cell-ID

Legend:
- Commercial Business District
- City/Suburb
- Each cloud represents a cell

Identify travel zone based on one or more cell-ID’s in zone, but requires knowledge of all cell towers in a travel zone. Better method being tested.
Cellular Network Based VMT

- Uses existing infrastructure
 - Wide coverage
- Coverage in urban canyons
- Will not ‘burden’ cell network
- Location “privacy”
 - Lower resolution than GPS
- Independent of cellular providers
 - Doesn’t require carrier approval
 - Doesn’t require knowledge of cell tower locations
- Determines vehicle’s current travel zone, not exact location

Coverage Map for AT&T

Source: AT&T
Other Cellular Network Location Methods

• Multilateration
 – Most common method for Locating vehicle
 – Requires knowledge of cell tower locations
 – Used in E911
 • Automatic Number Identification (ANI)
 • Automatic Location Identification (ALI): provided by carrier
VMT User Fee Payment: Reconciling for Paid Gas Tax

No financial stake by fuel stations

Dual system: Credit for gas tax
- Charge card, or
- Can use cash and fuel card

1. Driver swipes card and enters Vehicle Code
2. Modem
3. User ID, Vehicle Code, and Fuel Purchase Details
4. Determines VIN based on User ID and Vehicle Code
5. Request VMT Data based on VIN
6. Reply
7. VMT Charge less credit for Motor Fuel Use Tax paid
For further information:

See report “Technology Enabling Near-Term Nationwide Implementation of Distance Based Road User Fees”, by M. Donath, A. Gorjestani, C. Shankwitz, R. Hoglund, E Arpin, P.M. Cheng, A. Menon, and B. Newstrom

Download from:
http://www.its.umn.edu/Publications/ResearchReports/reportdetail.html?id=1790

Max Donath
Intelligent Transportation Systems Institute
University of Minnesota
P: 612-625-2304
E: donath@umn.edu
http://www.its.umn.edu